Nuprl Lemma : ideal_defines_eqv
∀r:CRng. ∀[a:|r| ⟶ ℙ]. (a Ideal of r 
⇒ EquivRel(|r|;u,v.a (u +r (-r v))))
Proof
Definitions occuring in Statement : 
ideal_p: S Ideal of R
, 
crng: CRng
, 
rng_minus: -r
, 
rng_plus: +r
, 
rng_car: |r|
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
ideal_p: S Ideal of R
, 
and: P ∧ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
member: t ∈ T
, 
crng: CRng
, 
rng: Rng
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subgrp_p: s SubGrp of g
, 
add_grp_of_rng: r↓+gp
, 
grp_id: e
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
sym: Sym(T;x,y.E[x; y])
, 
infix_ap: x f y
, 
trans: Trans(T;x,y.E[x; y])
, 
grp_car: |g|
, 
grp_op: *
Lemmas referenced : 
rng_car_wf, 
ideal_p_wf, 
crng_wf, 
rng_plus_inv, 
iff_weakening_equal, 
rng_plus_wf, 
rng_minus_wf, 
rng_one_wf, 
rng_plus_comm, 
rng_times_over_plus, 
rng_times_over_minus, 
rng_times_one, 
rng_minus_minus, 
rng_plus_assoc, 
rng_plus_ac_1, 
rng_plus_inv_assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache
Latex:
\mforall{}r:CRng.  \mforall{}[a:|r|  {}\mrightarrow{}  \mBbbP{}].  (a  Ideal  of  r  {}\mRightarrow{}  EquivRel(|r|;u,v.a  (u  +r  (-r  v))))
Date html generated:
2016_05_15-PM-00_23_17
Last ObjectModification:
2015_12_27-AM-00_01_00
Theory : rings_1
Home
Index