Nuprl Lemma : padic_wf

[p:ℤ]. (padic(p) ∈ Type)


Proof




Definitions occuring in Statement :  padic: padic(p) uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T padic: padic(p) nat:
Lemmas referenced :  nat_wf ifthenelse_wf eq_int_wf p-adics_wf p-units_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid hypothesis thin instantiate sqequalHypSubstitution isectElimination setElimination rename hypothesisEquality natural_numberEquality universeEquality axiomEquality equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}[p:\mBbbZ{}].  (padic(p)  \mmember{}  Type)



Date html generated: 2018_05_21-PM-03_25_57
Last ObjectModification: 2018_05_19-AM-08_22_49

Theory : rings_1


Home Index