Nuprl Lemma : padic_wf
∀[p:ℤ]. (padic(p) ∈ Type)
Proof
Definitions occuring in Statement : 
padic: padic(p)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
padic: padic(p)
, 
nat: ℕ
Lemmas referenced : 
nat_wf, 
ifthenelse_wf, 
eq_int_wf, 
p-adics_wf, 
p-units_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
hypothesis, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
universeEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[p:\mBbbZ{}].  (padic(p)  \mmember{}  Type)
Date html generated:
2018_05_21-PM-03_25_57
Last ObjectModification:
2018_05_19-AM-08_22_49
Theory : rings_1
Home
Index