Nuprl Lemma : p-units_wf
∀[p:ℤ]. (p-units(p) ∈ Type)
Proof
Definitions occuring in Statement : 
p-units: p-units(p)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
p-units: p-units(p)
, 
p-adics: p-adics(p)
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
Lemmas referenced : 
p-adics_wf, 
not_wf, 
equal-wf-T-base, 
less_than_wf, 
int_seg_wf, 
exp_wf2, 
false_wf, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
lambdaEquality, 
lambdaFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[p:\mBbbZ{}].  (p-units(p)  \mmember{}  Type)
Date html generated:
2018_05_21-PM-03_20_18
Last ObjectModification:
2018_05_19-AM-08_11_29
Theory : rings_1
Home
Index