Nuprl Lemma : p-units_wf

[p:ℤ]. (p-units(p) ∈ Type)


Proof




Definitions occuring in Statement :  p-units: p-units(p) uall: [x:A]. B[x] member: t ∈ T int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T p-units: p-units(p) p-adics: p-adics(p) nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: subtype_rel: A ⊆B int_seg: {i..j-} nat: le: A ≤ B false: False not: ¬A implies:  Q
Lemmas referenced :  p-adics_wf not_wf equal-wf-T-base less_than_wf int_seg_wf exp_wf2 false_wf le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule setEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality applyEquality setElimination rename dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed lambdaEquality lambdaFormation axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[p:\mBbbZ{}].  (p-units(p)  \mmember{}  Type)



Date html generated: 2018_05_21-PM-03_20_18
Last ObjectModification: 2018_05_19-AM-08_11_29

Theory : rings_1


Home Index