Nuprl Lemma : rprime_wf

[r:RngSig]. ∀[u:|r|].  (r-Prime(u) ∈ ℙ)


Proof




Definitions occuring in Statement :  rprime: r-Prime(u) rng_car: |r| rng_sig: RngSig uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  rprime: r-Prime(u) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: infix_ap: y so_apply: x[s]
Lemmas referenced :  and_wf not_wf ring_divs_wf rng_one_wf all_wf rng_car_wf rng_times_wf or_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality functionEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[r:RngSig].  \mforall{}[u:|r|].    (r-Prime(u)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_22_45
Last ObjectModification: 2015_12_27-AM-00_01_09

Theory : rings_1


Home Index