Nuprl Lemma : rprime_wf
∀[r:RngSig]. ∀[u:|r|]. (r-Prime(u) ∈ ℙ)
Proof
Definitions occuring in Statement :
rprime: r-Prime(u)
,
rng_car: |r|
,
rng_sig: RngSig
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
rprime: r-Prime(u)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
infix_ap: x f y
,
so_apply: x[s]
Lemmas referenced :
and_wf,
not_wf,
ring_divs_wf,
rng_one_wf,
all_wf,
rng_car_wf,
rng_times_wf,
or_wf,
rng_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaEquality,
functionEquality,
applyEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[r:RngSig]. \mforall{}[u:|r|]. (r-Prime(u) \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-00_22_45
Last ObjectModification:
2015_12_27-AM-00_01_09
Theory : rings_1
Home
Index