Nuprl Lemma : poset_anti_sym
∀[s:POSet{i}]. ∀[a,b:|s|].  (a = b ∈ |s|) supposing ((b ≤ a) and (a ≤ b))
Proof
Definitions occuring in Statement : 
poset: POSet{i}
, 
set_leq: a ≤ b
, 
set_car: |p|
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
, 
uimplies: b supposing a
, 
prop: ℙ
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
Lemmas referenced : 
poset_properties, 
set_leq_wf, 
set_car_wf, 
poset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[s:POSet\{i\}].  \mforall{}[a,b:|s|].    (a  =  b)  supposing  ((b  \mleq{}  a)  and  (a  \mleq{}  b))
Date html generated:
2016_05_15-PM-00_05_05
Last ObjectModification:
2015_12_26-PM-11_27_51
Theory : sets_1
Home
Index