Nuprl Lemma : alg_hom_p_wf
∀a:RngSig. ∀m,n:algebra_sig{i:l}(|a|). ∀f:m.car ⟶ n.car. (alg_hom_p(a; m; n; f) ∈ ℙ)
Proof
Definitions occuring in Statement :
alg_hom_p: alg_hom_p(a; m; n; f)
,
alg_car: a.car
,
algebra_sig: algebra_sig{i:l}(A)
,
prop: ℙ
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
rng_car: |r|
,
rng_sig: RngSig
Definitions unfolded in proof :
alg_hom_p: alg_hom_p(a; m; n; f)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
and_wf,
module_hom_p_wf,
fun_thru_2op_wf,
alg_car_wf,
rng_car_wf,
alg_times_wf,
equal_wf,
alg_one_wf,
algebra_sig_wf,
rng_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
dependent_functionElimination,
hypothesisEquality,
hypothesis,
applyEquality,
functionEquality
Latex:
\mforall{}a:RngSig. \mforall{}m,n:algebra\_sig\{i:l\}(|a|). \mforall{}f:m.car {}\mrightarrow{} n.car. (alg\_hom\_p(a; m; n; f) \mmember{} \mBbbP{})
Date html generated:
2016_05_16-AM-07_28_00
Last ObjectModification:
2015_12_28-PM-05_07_32
Theory : algebras_1
Home
Index