Nuprl Lemma : grp_op_functionality_wrt_massoc

g:IAbMonoid. ∀a,a',b,b':|g|.  ((a b)  (a' b')  ((a a') (b b')))


Proof




Definitions occuring in Statement :  massoc: b infix_ap: y all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_op: * grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] massoc: b symmetrize: Symmetrize(x,y.R[x; y];a;b) and: P ∧ Q
Lemmas referenced :  massoc_wf grp_car_wf iabmonoid_wf grp_op_ap2_functionality_wrt_mdivides
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis isectElimination productElimination independent_pairFormation independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a,a',b,b':|g|.    ((a  \msim{}  b)  {}\mRightarrow{}  (a'  \msim{}  b')  {}\mRightarrow{}  ((a  *  a')  \msim{}  (b  *  b')))



Date html generated: 2016_05_16-AM-07_43_39
Last ObjectModification: 2015_12_28-PM-05_54_29

Theory : factor_1


Home Index