Nuprl Lemma : grp_op_ap2_functionality_wrt_mdivides

g:IAbMonoid. ∀a,a',b,b':|g|.  ((a b)  (a' b')  ((a a') (b b')))


Proof




Definitions occuring in Statement :  mdivides: a infix_ap: y all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_op: * grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] mdivides: a exists: x:A. B[x] infix_ap: y squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  mdivides_wf grp_car_wf iabmonoid_wf grp_op_wf equal_wf squash_wf true_wf infix_ap_wf iff_weakening_equal mon_assoc abmonoid_ac_1 abmonoid_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis isectElimination productElimination dependent_pairFormation applyEquality because_Cache lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality equalityUniverse levelHypothesis natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a,a',b,b':|g|.    ((a  |  b)  {}\mRightarrow{}  (a'  |  b')  {}\mRightarrow{}  ((a  *  a')  |  (b  *  b')))



Date html generated: 2017_10_01-AM-09_57_59
Last ObjectModification: 2017_03_03-PM-00_59_01

Theory : factor_1


Home Index