Nuprl Lemma : massoc_cancel
∀g:IAbMonoid. (Cancel(|g|;|g|;*) 
⇒ (∀a,b,c:|g|.  (((a * b) ~ (a * c)) 
⇒ (b ~ c))))
Proof
Definitions occuring in Statement : 
massoc: a ~ b
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iabmonoid: IAbMonoid
, 
grp_op: *
, 
grp_car: |g|
, 
cancel: Cancel(T;S;op)
Definitions unfolded in proof : 
massoc: a ~ b
, 
symmetrize: Symmetrize(x,y.R[x; y];a;b)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
prop: ℙ
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
Lemmas referenced : 
mdivides_wf, 
infix_ap_wf, 
grp_car_wf, 
grp_op_wf, 
cancel_wf, 
iabmonoid_wf, 
mdivides_cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_pairFormation, 
hypothesis, 
productEquality, 
lemma_by_obid, 
dependent_functionElimination, 
setElimination, 
rename, 
hypothesisEquality, 
isectElimination, 
because_Cache, 
independent_functionElimination
Latex:
\mforall{}g:IAbMonoid.  (Cancel(|g|;|g|;*)  {}\mRightarrow{}  (\mforall{}a,b,c:|g|.    (((a  *  b)  \msim{}  (a  *  c))  {}\mRightarrow{}  (b  \msim{}  c))))
Date html generated:
2016_05_16-AM-07_43_43
Last ObjectModification:
2015_12_28-PM-05_54_31
Theory : factor_1
Home
Index