Nuprl Lemma : massoc_cancel

g:IAbMonoid. (Cancel(|g|;|g|;*)  (∀a,b,c:|g|.  (((a b) (a c))  (b c))))


Proof




Definitions occuring in Statement :  massoc: b infix_ap: y all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_op: * grp_car: |g| cancel: Cancel(T;S;op)
Definitions unfolded in proof :  massoc: b symmetrize: Symmetrize(x,y.R[x; y];a;b) all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] infix_ap: y
Lemmas referenced :  mdivides_wf infix_ap_wf grp_car_wf grp_op_wf cancel_wf iabmonoid_wf mdivides_cancel
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation sqequalHypSubstitution productElimination thin cut independent_pairFormation hypothesis productEquality lemma_by_obid dependent_functionElimination setElimination rename hypothesisEquality isectElimination because_Cache independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  (Cancel(|g|;|g|;*)  {}\mRightarrow{}  (\mforall{}a,b,c:|g|.    (((a  *  b)  \msim{}  (a  *  c))  {}\mRightarrow{}  (b  \msim{}  c))))



Date html generated: 2016_05_16-AM-07_43_43
Last ObjectModification: 2015_12_28-PM-05_54_31

Theory : factor_1


Home Index