Nuprl Lemma : massoc_functionality_wrt_massoc

g:IAbMonoid. ∀a,a',b,b':|g|.  ((a b)  (a' b')  (a a' ⇐⇒ b'))


Proof




Definitions occuring in Statement :  massoc: b all: x:A. B[x] iff: ⇐⇒ Q implies:  Q iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q guard: {T}
Lemmas referenced :  iabmonoid_wf equiv_rel_self_functionality grp_car_wf massoc_wf massoc_equiv_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a,a',b,b':|g|.    ((a  \msim{}  b)  {}\mRightarrow{}  (a'  \msim{}  b')  {}\mRightarrow{}  (a  \msim{}  a'  \mLeftarrow{}{}\mRightarrow{}  b  \msim{}  b'))



Date html generated: 2016_05_16-AM-07_43_41
Last ObjectModification: 2015_12_28-PM-05_54_23

Theory : factor_1


Home Index