Nuprl Lemma : massoc_inversion

g:IAbMonoid. ∀a,b:|g|.  ((a b)  (b a))


Proof




Definitions occuring in Statement :  massoc: b all: x:A. B[x] implies:  Q iabmonoid: IAbMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: iabmonoid: IAbMonoid imon: IMonoid uall: [x:A]. B[x] equiv_rel: EquivRel(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) and: P ∧ Q
Lemmas referenced :  massoc_wf grp_car_wf iabmonoid_wf massoc_equiv_rel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis isectElimination productElimination independent_functionElimination

Latex:
\mforall{}g:IAbMonoid.  \mforall{}a,b:|g|.    ((a  \msim{}  b)  {}\mRightarrow{}  (b  \msim{}  a))



Date html generated: 2016_05_16-AM-07_43_30
Last ObjectModification: 2015_12_28-PM-05_54_32

Theory : factor_1


Home Index