Nuprl Lemma : permr_massoc_rel_wf

g:GrpSig. (≡~ ∈ (|g| List) ⟶ (|g| List) ⟶ ℙ)


Proof




Definitions occuring in Statement :  permr_massoc_rel: ~ list: List prop: all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] grp_car: |g| grp_sig: GrpSig
Definitions unfolded in proof :  permr_massoc_rel: ~ all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  ab_binrel_wf list_wf grp_car_wf permr_massoc_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality dependent_functionElimination

Latex:
\mforall{}g:GrpSig.  (\mequiv{}\msim{}  \mmember{}  (|g|  List)  {}\mrightarrow{}  (|g|  List)  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_16-AM-07_45_17
Last ObjectModification: 2015_12_28-PM-05_53_39

Theory : factor_1


Home Index