Nuprl Lemma : permr_massoc_wf

g:GrpSig. ∀as,bs:|g| List.  (as ≡ bs upto ~ ∈ ℙ)


Proof




Definitions occuring in Statement :  permr_massoc: as ≡ bs upto ~ list: List prop: all: x:A. B[x] member: t ∈ T grp_car: |g| grp_sig: GrpSig
Definitions unfolded in proof :  permr_massoc: as ≡ bs upto ~ all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  permr_upto_wf grp_car_wf massoc_wf list_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis lambdaEquality

Latex:
\mforall{}g:GrpSig.  \mforall{}as,bs:|g|  List.    (as  \mequiv{}  bs  upto  \msim{}  \mmember{}  \mBbbP{})



Date html generated: 2016_05_16-AM-07_44_39
Last ObjectModification: 2015_12_28-PM-05_53_44

Theory : factor_1


Home Index