Nuprl Lemma : comb_for_mon_reduce_wf

λg,as,z. (Π as) ∈ g:IMonoid ⟶ as:(|g| List) ⟶ (↓True) ⟶ |g|


Proof




Definitions occuring in Statement :  mon_reduce: mon_reduce list: List squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] imon: IMonoid grp_car: |g|
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: imon: IMonoid
Lemmas referenced :  mon_reduce_wf squash_wf true_wf list_wf grp_car_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType isectElimination setElimination rename

Latex:
\mlambda{}g,as,z.  (\mPi{}  as)  \mmember{}  g:IMonoid  {}\mrightarrow{}  as:(|g|  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |g|



Date html generated: 2019_10_16-PM-01_01_48
Last ObjectModification: 2018_10_08-AM-11_47_02

Theory : list_2


Home Index