Nuprl Lemma : comb_for_mon_reduce_wf
λg,as,z. (Π as) ∈ g:IMonoid ⟶ as:(|g| List) ⟶ (↓True) ⟶ |g|
Proof
Definitions occuring in Statement : 
mon_reduce: mon_reduce, 
list: T List
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
imon: IMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
imon: IMonoid
Lemmas referenced : 
mon_reduce_wf, 
squash_wf, 
true_wf, 
list_wf, 
grp_car_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
isectElimination, 
setElimination, 
rename
Latex:
\mlambda{}g,as,z.  (\mPi{}  as)  \mmember{}  g:IMonoid  {}\mrightarrow{}  as:(|g|  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  |g|
Date html generated:
2019_10_16-PM-01_01_48
Last ObjectModification:
2018_10_08-AM-11_47_02
Theory : list_2
Home
Index