Nuprl Lemma : free_abmon_umap_wf

S:DSet. ∀f:FAbMon(S).
  (f.umap ∈ mon':AbMon ⟶ f':(|S| ⟶ |mon'|) ⟶ {!g:MonHom(f.mon,mon') (g f.inj) f' ∈ (|S| ⟶ |mon'|)})


Proof




Definitions occuring in Statement :  free_abmon_umap: f.umap free_abmon_inj: f.inj free_abmon_mon: f.mon free_abmonoid: FAbMon(S) compose: g unique_set: {!x:T P[x]} all: x:A. B[x] member: t ∈ T function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) abmonoid: AbMon grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T free_abmonoid: FAbMon(S) free_abmon_umap: f.umap free_abmon_inj: f.inj free_abmon_mon: f.mon pi1: fst(t) pi2: snd(t)
Lemmas referenced :  free_abmonoid_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis lemma_by_obid dependent_functionElimination

Latex:
\mforall{}S:DSet.  \mforall{}f:FAbMon(S).
    (f.umap  \mmember{}  mon':AbMon  {}\mrightarrow{}  f':(|S|  {}\mrightarrow{}  |mon'|)  {}\mrightarrow{}  \{!g:MonHom(f.mon,mon')  |  (g  o  f.inj)  =  f'\})



Date html generated: 2016_05_16-AM-07_48_29
Last ObjectModification: 2015_12_28-PM-06_02_14

Theory : mset


Home Index