Nuprl Lemma : ftype_properties

s:DSet. ∀a:MSet{s}. ∀x:FTy{s}(a).  (↑(x ∈b a))


Proof




Definitions occuring in Statement :  ftype: FTy{s}(a) mset_mem: mset_mem mset: MSet{s} assert: b all: x:A. B[x] dset: DSet
Definitions unfolded in proof :  all: x:A. B[x] ftype: FTy{s}(a) uall: [x:A]. B[x] member: t ∈ T implies:  Q sq_stable: SqStable(P) squash: T
Lemmas referenced :  dset_wf mset_wf ftype_wf decidable__assert mset_mem_wf assert_wf sq_stable_from_decidable
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut lemma_by_obid isectElimination dependent_functionElimination hypothesisEquality hypothesis independent_functionElimination introduction sqequalRule imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}s:DSet.  \mforall{}a:MSet\{s\}.  \mforall{}x:FTy\{s\}(a).    (\muparrow{}(x  \mmember{}\msubb{}  a))



Date html generated: 2016_05_16-AM-07_47_22
Last ObjectModification: 2016_01_16-PM-11_40_06

Theory : mset


Home Index