Nuprl Lemma : mset_qinc
∀s:DSet. ((|s| List) ⊆r MSet{s})
Proof
Definitions occuring in Statement : 
mset: MSet{s}
, 
list: T List
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
mset: MSet{s}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
dset: DSet
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
subtype_quotient, 
list_wf, 
set_car_wf, 
permr_wf, 
permr_equiv_rel, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}s:DSet.  ((|s|  List)  \msubseteq{}r  MSet\{s\})
Date html generated:
2019_10_16-PM-01_06_25
Last ObjectModification:
2018_09_17-PM-06_16_39
Theory : mset
Home
Index