Nuprl Lemma : comb_for_extend_perm_wf

λn,p,z. ↑{n}(p) ∈ n:ℕ ⟶ p:Sym(n) ⟶ (↓True) ⟶ Sym(n 1)


Proof




Definitions occuring in Statement :  extend_perm: {n}(p) sym_grp: Sym(n) nat: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: sym_grp: Sym(n) nat:
Lemmas referenced :  extend_perm_wf squash_wf true_wf perm_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType isectElimination natural_numberEquality setElimination rename

Latex:
\mlambda{}n,p,z.  \muparrow{}\{n\}(p)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  p:Sym(n)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  Sym(n  +  1)



Date html generated: 2019_10_16-PM-00_59_56
Last ObjectModification: 2018_10_08-AM-09_14_25

Theory : perms_1


Home Index