Nuprl Lemma : comb_for_permr_wf
λT,as,bs,z. (as ≡(T) bs) ∈ T:Type ⟶ as:(T List) ⟶ bs:(T List) ⟶ (↓True) ⟶ ℙ
Proof
Definitions occuring in Statement : 
permr: as ≡(T) bs
, 
list: T List
, 
prop: ℙ
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
permr_wf, 
squash_wf, 
true_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
isectElimination, 
inhabitedIsType, 
universeEquality
Latex:
\mlambda{}T,as,bs,z.  (as  \mequiv{}(T)  bs)  \mmember{}  T:Type  {}\mrightarrow{}  as:(T  List)  {}\mrightarrow{}  bs:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}
Date html generated:
2019_10_16-PM-01_00_18
Last ObjectModification:
2018_10_08-AM-10_18_07
Theory : perms_2
Home
Index