Nuprl Lemma : comb_for_permr_wf

λT,as,bs,z. (as ≡(T) bs) ∈ T:Type ⟶ as:(T List) ⟶ bs:(T List) ⟶ (↓True) ⟶ ℙ


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs list: List prop: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop:
Lemmas referenced :  permr_wf squash_wf true_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType isectElimination inhabitedIsType universeEquality

Latex:
\mlambda{}T,as,bs,z.  (as  \mequiv{}(T)  bs)  \mmember{}  T:Type  {}\mrightarrow{}  as:(T  List)  {}\mrightarrow{}  bs:(T  List)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbP{}



Date html generated: 2019_10_16-PM-01_00_18
Last ObjectModification: 2018_10_08-AM-10_18_07

Theory : perms_2


Home Index