Nuprl Lemma : free_abmon_umap_properties_1

S:DSet. ∀M:FAbMon(S). ∀N:AbMon. ∀p:|S| ⟶ |N|.  (((M.umap p) M.inj) p ∈ (|S| ⟶ |N|))


Proof




Definitions occuring in Statement :  free_abmon_umap: f.umap free_abmon_inj: f.inj free_abmonoid: FAbMon(S) compose: g all: x:A. B[x] apply: a function: x:A ⟶ B[x] equal: t ∈ T abmonoid: AbMon grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] dset: DSet abmonoid: AbMon mon: Mon free_abmonoid: FAbMon(S) free_abmon_umap: f.umap pi2: snd(t) free_abmon_inj: f.inj pi1: fst(t) unique_set: {!x:T P[x]} squash: T and: P ∧ Q
Lemmas referenced :  set_car_wf grp_car_wf abmonoid_wf free_abmonoid_wf dset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis functionEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality dependent_functionElimination productElimination sqequalRule applyEquality functionExtensionality applyLambdaEquality imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}S:DSet.  \mforall{}M:FAbMon(S).  \mforall{}N:AbMon.  \mforall{}p:|S|  {}\mrightarrow{}  |N|.    (((M.umap  N  p)  o  M.inj)  =  p)



Date html generated: 2017_10_01-AM-10_01_08
Last ObjectModification: 2017_03_03-PM-01_03_26

Theory : polynom_1


Home Index