Nuprl Lemma : mon_p_wf
∀g:GrpSig. (mon_p(g) ∈ ℙ)
Proof
Definitions occuring in Statement :
mon_p: mon_p(g)
,
prop: ℙ
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
grp_sig: GrpSig
Definitions unfolded in proof :
mon_p: mon_p(g)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
monoid_p_wf,
grp_car_wf,
grp_op_wf,
grp_id_wf,
grp_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis
Latex:
\mforall{}g:GrpSig. (mon\_p(g) \mmember{} \mBbbP{})
Date html generated:
2016_05_16-AM-08_13_49
Last ObjectModification:
2015_12_28-PM-06_09_24
Theory : polynom_1
Home
Index