Step
*
2
1
3
1
2
of Lemma
eo-forward-trivial
.....wf.....
1. Info : Type
2. eo : EO+(Info)
3. e : E
4. ↑first(e)
5. (λx.((eo."dom" x) ∧b (e ≤loc x ∨b(¬bloc(x) = loc(e))))) = eo."dom" ∈ (es-base-E(eo) ─→ 𝔹)
6. eo["dom" := eo."dom"] ∈ {r:eo_record{i:l}()| eo_axioms(r)}
7. eo ∈ {r:eo_record{i:l}()| eo_axioms(r)}
⊢ eo["dom" := eo."dom"] ∈ record(x.eo-record-type{i:l}(eo) x)
BY
{ (Subst' eo-record-type{i:l}(eo) ~ eo-record-type{i:l}(eo["dom" := eo."dom"]) 0
THEN Try ((BLemma `eo-record-record` THEN Auto))
THEN RepUR ``eo-record-type`` 0
THEN Auto) }
Latex:
.....wf.....
1. Info : Type
2. eo : EO+(Info)
3. e : E
4. \muparrow{}first(e)
5. (\mlambda{}x.((eo."dom" x) \mwedge{}\msubb{} (e \mleq{}loc x \mvee{}\msubb{}(\mneg{}\msubb{}loc(x) = loc(e))))) = eo."dom"
6. eo["dom" := eo."dom"] \mmember{} \{r:eo\_record\{i:l\}()| eo\_axioms(r)\}
7. eo \mmember{} \{r:eo\_record\{i:l\}()| eo\_axioms(r)\}
\mvdash{} eo["dom" := eo."dom"] \mmember{} record(x.eo-record-type\{i:l\}(eo) x)
By
(Subst' eo-record-type\{i:l\}(eo) \msim{} eo-record-type\{i:l\}(eo["dom" := eo."dom"]) 0
THEN Try ((BLemma `eo-record-record` THEN Auto))
THEN RepUR ``eo-record-type`` 0
THEN Auto)
Home
Index