Nuprl Lemma : eo-forward-trivial
∀[Info:Type]. ∀[eo:EO+(Info)]. ∀[e:E].  eo.e = eo ∈ EO+(Info) supposing ↑first(e)
Proof
Definitions occuring in Statement : 
eo-forward: eo.e
, 
event-ordering+: EO+(Info)
, 
es-first: first(e)
, 
es-E: E
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
es-dom_wf, 
event-ordering+_subtype, 
bool_wf, 
eqtt_to_assert, 
es-E_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bfalse_wf, 
assert_wf, 
es-ble_wf, 
assert-es-ble, 
btrue_wf, 
es-le_wf, 
assert-eq-id, 
Id_wf, 
es-loc_wf, 
es-le-total, 
es-locl-first, 
assert_elim, 
btrue_neq_bfalse, 
ppcc-problem, 
unit_wf2, 
iff_imp_equal_bool, 
es-le_weakening_eq, 
true_wf, 
false_wf, 
iff_weakening_equal, 
es-le_weakening, 
event-ordering+_wf, 
eq_atom_wf, 
uiff_transitivity, 
equal-wf-base, 
atom_subtype_base, 
assert_of_eq_atom, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
subtype_rel_self, 
es-base-E_wf, 
rec_select_update_lemma, 
event_ordering_wf, 
nat_wf, 
record_wf, 
top_wf, 
record-update_wf, 
eo_axioms_wf, 
eo-record-record-eq, 
eo_record_wf, 
eo-record-record, 
identity-record-update, 
eo-record-type_wf, 
set_wf, 
sq_stable__eo_axioms, 
eo-reset-dom_wf_extended
\mforall{}[Info:Type].  \mforall{}[eo:EO+(Info)].  \mforall{}[e:E].    eo.e  =  eo  supposing  \muparrow{}first(e)
Date html generated:
2015_07_17-PM-00_04_45
Last ObjectModification:
2015_02_04-PM-05_41_31
Home
Index