Nuprl Lemma : eo-forward-trivial
∀[Info:Type]. ∀[eo:EO+(Info)]. ∀[e:E]. eo.e = eo ∈ EO+(Info) supposing ↑first(e)
Proof
Definitions occuring in Statement :
eo-forward: eo.e
,
event-ordering+: EO+(Info)
,
es-first: first(e)
,
es-E: E
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
universe: Type
,
equal: s = t ∈ T
Lemmas :
es-dom_wf,
event-ordering+_subtype,
bool_wf,
eqtt_to_assert,
es-E_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
bfalse_wf,
assert_wf,
es-ble_wf,
assert-es-ble,
btrue_wf,
es-le_wf,
assert-eq-id,
Id_wf,
es-loc_wf,
es-le-total,
es-locl-first,
assert_elim,
btrue_neq_bfalse,
ppcc-problem,
unit_wf2,
iff_imp_equal_bool,
es-le_weakening_eq,
true_wf,
false_wf,
iff_weakening_equal,
es-le_weakening,
event-ordering+_wf,
eq_atom_wf,
uiff_transitivity,
equal-wf-base,
atom_subtype_base,
assert_of_eq_atom,
iff_transitivity,
bnot_wf,
not_wf,
iff_weakening_uiff,
assert_of_bnot,
subtype_rel_self,
es-base-E_wf,
rec_select_update_lemma,
event_ordering_wf,
nat_wf,
record_wf,
top_wf,
record-update_wf,
eo_axioms_wf,
eo-record-record-eq,
eo_record_wf,
eo-record-record,
identity-record-update,
eo-record-type_wf,
set_wf,
sq_stable__eo_axioms,
eo-reset-dom_wf_extended
\mforall{}[Info:Type]. \mforall{}[eo:EO+(Info)]. \mforall{}[e:E]. eo.e = eo supposing \muparrow{}first(e)
Date html generated:
2015_07_17-PM-00_04_45
Last ObjectModification:
2015_02_04-PM-05_41_31
Home
Index