Nuprl Lemma : eo_axioms_wf

[r:eo_record{i:l}()]. (eo_axioms(r) ∈ ℙ)


Proof




Definitions occuring in Statement :  eo_axioms: eo_axioms(r) eo_record: eo_record{i:l}() uall: [x:A]. B[x] prop: member: t ∈ T
Lemmas :  subtype_rel_self bool_wf Id_wf nat_wf all_wf squash_wf infix_ap_wf less_than_wf equal_wf not_wf isect_wf iff_wf assert_wf eo_record_wf
\mforall{}[r:eo\_record\{i:l\}()].  (eo\_axioms(r)  \mmember{}  \mBbbP{})



Date html generated: 2015_07_17-AM-08_33_52
Last ObjectModification: 2015_01_27-PM-02_59_58

Home Index