Nuprl Lemma : eo_axioms_wf
∀[r:eo_record{i:l}()]. (eo_axioms(r) ∈ ℙ)
Proof
Definitions occuring in Statement : 
eo_axioms: eo_axioms(r)
, 
eo_record: eo_record{i:l}()
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Lemmas : 
subtype_rel_self, 
bool_wf, 
Id_wf, 
nat_wf, 
all_wf, 
squash_wf, 
infix_ap_wf, 
less_than_wf, 
equal_wf, 
not_wf, 
isect_wf, 
iff_wf, 
assert_wf, 
eo_record_wf
\mforall{}[r:eo\_record\{i:l\}()].  (eo\_axioms(r)  \mmember{}  \mBbbP{})
Date html generated:
2015_07_17-AM-08_33_52
Last ObjectModification:
2015_01_27-PM-02_59_58
Home
Index