Nuprl Lemma : record-update_wf

[T:Atom ⟶ 𝕌']. ∀[z:Atom]. ∀[r:record(x.T[x])]. ∀[v:T[z]].  (r[z := v] ∈ record(x.T[x]))


Proof




Definitions occuring in Statement :  record-update: r[x := v] record: record(x.T[x]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] atom: Atom universe: Type
Definitions unfolded in proof :  record: record(x.T[x]) uall: [x:A]. B[x] member: t ∈ T record-update: r[x := v] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B sq_type: SQType(T) guard: {T} so_apply: x[s] bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q bnot: ¬bb assert: b false: False
Lemmas referenced :  eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base subtype_rel_self eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination because_Cache applyEquality instantiate cumulativity atomEquality dependent_functionElimination independent_functionElimination functionExtensionality equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp voidElimination axiomEquality isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Atom  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[z:Atom].  \mforall{}[r:record(x.T[x])].  \mforall{}[v:T[z]].    (r[z  :=  v]  \mmember{}  record(x.T[x]))



Date html generated: 2018_05_21-PM-08_39_39
Last ObjectModification: 2017_07_26-PM-06_03_42

Theory : general


Home Index