Nuprl Lemma : identity-record-update
∀[T:Atom ⟶ 𝕌']. ∀[z:Atom]. ∀[r:record(x.T[x])]. (r[z := r.z] = r ∈ record(x.T[x]))
Proof
Definitions occuring in Statement :
record-update: r[x := v]
,
record-select: r.x
,
record: record(x.T[x])
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
atom: Atom
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
record: record(x.T[x])
,
record-select: r.x
,
record-update: r[x := v]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
sq_type: SQType(T)
,
guard: {T}
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
eq_atom_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_atom,
subtype_base_sq,
atom_subtype_base,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_atom,
record_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
functionExtensionality,
sqequalRule,
extract_by_obid,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
lambdaFormation,
unionElimination,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
productElimination,
independent_isectElimination,
instantiate,
cumulativity,
atomEquality,
dependent_functionElimination,
independent_functionElimination,
applyEquality,
dependent_pairFormation,
promote_hyp,
because_Cache,
voidElimination,
lambdaEquality,
isect_memberEquality,
axiomEquality,
functionEquality,
universeEquality
Latex:
\mforall{}[T:Atom {}\mrightarrow{} \mBbbU{}']. \mforall{}[z:Atom]. \mforall{}[r:record(x.T[x])]. (r[z := r.z] = r)
Date html generated:
2018_05_21-PM-08_40_16
Last ObjectModification:
2017_07_26-PM-06_04_23
Theory : general
Home
Index