Nuprl Lemma : identity-record-update

[T:Atom ⟶ 𝕌']. ∀[z:Atom]. ∀[r:record(x.T[x])].  (r[z := r.z] r ∈ record(x.T[x]))


Proof




Definitions occuring in Statement :  record-update: r[x := v] record-select: r.x record: record(x.T[x]) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] atom: Atom universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T record: record(x.T[x]) record-select: r.x record-update: r[x := v] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q bnot: ¬bb assert: b false: False so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom record_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution functionExtensionality sqequalRule extract_by_obid isectElimination thin hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination instantiate cumulativity atomEquality dependent_functionElimination independent_functionElimination applyEquality dependent_pairFormation promote_hyp because_Cache voidElimination lambdaEquality isect_memberEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Atom  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[z:Atom].  \mforall{}[r:record(x.T[x])].    (r[z  :=  r.z]  =  r)



Date html generated: 2018_05_21-PM-08_40_16
Last ObjectModification: 2017_07_26-PM-06_04_23

Theory : general


Home Index