Nuprl Lemma : identity-record-update
∀[T:Atom ⟶ 𝕌']. ∀[z:Atom]. ∀[r:record(x.T[x])].  (r[z := r.z] = r ∈ record(x.T[x]))
Proof
Definitions occuring in Statement : 
record-update: r[x := v]
, 
record-select: r.x
, 
record: record(x.T[x])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
atom: Atom
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
record: record(x.T[x])
, 
record-select: r.x
, 
record-update: r[x := v]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
record_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
functionExtensionality, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
instantiate, 
cumulativity, 
atomEquality, 
dependent_functionElimination, 
independent_functionElimination, 
applyEquality, 
dependent_pairFormation, 
promote_hyp, 
because_Cache, 
voidElimination, 
lambdaEquality, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Atom  {}\mrightarrow{}  \mBbbU{}'].  \mforall{}[z:Atom].  \mforall{}[r:record(x.T[x])].    (r[z  :=  r.z]  =  r)
Date html generated:
2018_05_21-PM-08_40_16
Last ObjectModification:
2017_07_26-PM-06_04_23
Theory : general
Home
Index