Nuprl Lemma : es-dt_wf
∀[l:IdLnk]. ∀[da:k:Knd fp-> Type]. (dt(l;da) ∈ tg:Id fp-> Type)
Proof
Definitions occuring in Statement :
es-dt: dt(l;da)
,
fpf: a:A fp-> B[a]
,
Knd: Knd
,
IdLnk: IdLnk
,
Id: Id
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Lemmas :
compose-fpf_wf,
Id_wf,
isrcv_wf,
bool_wf,
eqtt_to_assert,
eq_lnk_wf,
lnk_wf,
assert-eq-lnk,
tagof_wf,
unit_wf2,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
IdLnk_wf,
it_wf,
rcv_wf,
false_wf,
fpf_wf,
Knd_wf,
product_subtype_base,
atom2_subtype_base
\mforall{}[l:IdLnk]. \mforall{}[da:k:Knd fp-> Type]. (dt(l;da) \mmember{} tg:Id fp-> Type)
Date html generated:
2015_07_17-AM-11_17_49
Last ObjectModification:
2015_01_28-AM-07_37_10
Home
Index