Nuprl Lemma : es-interface-conditional-domain-iff

[Info:Type]. ∀es:EO+(Info). ∀[A:Type]. ∀X,Y:EClass(A). ∀e:E.  (↑e ∈b [X?Y] ⇐⇒ (↑e ∈b X) ∨ (↑e ∈b Y))


Proof




Definitions occuring in Statement :  cond-class: [X?Y] in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q universe: Type
Lemmas :  es-E_wf event-ordering+_subtype eclass_wf event-ordering+_wf assert_functionality_wrt_uiff in-eclass_wf cond-class_wf top_wf es-interface-subtype_rel2 bor_wf es-interface-conditional-domain assert_wf iff_wf or_wf assert_of_bor
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}[A:Type].  \mforall{}X,Y:EClass(A).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  [X?Y]  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  X)  \mvee{}  (\muparrow{}e  \mmember{}\msubb{}  Y))



Date html generated: 2015_07_17-PM-00_51_26
Last ObjectModification: 2015_01_27-PM-11_01_03

Home Index