Nuprl Lemma : es-interface-conditional-domain

[Info:Type]. ∀[es:EO+(Info)]. ∀[A:Type]. ∀[X,Y:EClass(A)]. ∀[e:E].  e ∈b [X?Y] e ∈b X ∨be ∈b Y


Proof




Definitions occuring in Statement :  cond-class: [X?Y] in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E bor: p ∨bq bool: 𝔹 uall: [x:A]. B[x] universe: Type equal: t ∈ T
Lemmas :  eq_int_wf bag-size_wf bool_wf eqtt_to_assert assert_of_eq_int nat_wf eq_int_eq_true btrue_wf iff_weakening_equal eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int es-E_wf event-ordering+_subtype eclass_wf event-ordering+_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[X,Y:EClass(A)].  \mforall{}[e:E].    e  \mmember{}\msubb{}  [X?Y]  =  e  \mmember{}\msubb{}  X  \mvee{}\msubb{}e  \mmember{}\msubb{}  Y



Date html generated: 2015_07_17-PM-00_51_19
Last ObjectModification: 2015_02_04-PM-05_29_36

Home Index