Nuprl Lemma : fpf-all-join-decl

[A:Type]
  ∀eq:EqDecider(A)
    ∀[P:x:A ─→ Type ─→ ℙ]
      ∀f,g:x:A fp-> Type.
        (∀y∈dom(f). w=f(y)   P[y;w]  ∀y∈dom(g). w=g(y)   P[y;w]  ∀y∈dom(f ⊕ g). w=f ⊕ g(y)   P[y;w])


Proof




Definitions occuring in Statement :  fpf-all: x∈dom(f). v=f(x)   P[x; v] fpf-join: f ⊕ g fpf: a:A fp-> B[a] deq: EqDecider(T) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ─→ B[x] universe: Type
Lemmas :  fpf-join-dom2 fpf-join-ap-sq assert_wf fpf-dom_wf fpf-join_wf top_wf subtype-fpf2 subtype_top fpf-all_wf fpf_wf deq_wf bool_wf equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot
\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[P:x:A  {}\mrightarrow{}  Type  {}\mrightarrow{}  \mBbbP{}]
            \mforall{}f,g:x:A  fp->  Type.
                (\mforall{}y\mmember{}dom(f).  w=f(y)  {}\mRightarrow{}    P[y;w]
                {}\mRightarrow{}  \mforall{}y\mmember{}dom(g).  w=g(y)  {}\mRightarrow{}    P[y;w]
                {}\mRightarrow{}  \mforall{}y\mmember{}dom(f  \moplus{}  g).  w=f  \moplus{}  g(y)  {}\mRightarrow{}    P[y;w])



Date html generated: 2015_07_17-AM-11_14_00
Last ObjectModification: 2015_01_28-AM-07_41_57

Home Index