Nuprl Lemma : fpf-cap-single
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[x,y:A]. ∀[v,z:Top]. (x : v(y)?z ~ if eq x y then v else z fi )
Proof
Definitions occuring in Statement :
fpf-single: x : v
,
fpf-cap: f(x)?z
,
deq: EqDecider(T)
,
ifthenelse: if b then t else f fi
,
uall: ∀[x:A]. B[x]
,
top: Top
,
apply: f a
,
universe: Type
,
sqequal: s ~ t
Lemmas :
deq_member_cons_lemma,
deq_member_nil_lemma,
bool_wf,
eqtt_to_assert,
safe-assert-deq,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
top_wf,
deq_wf
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[x,y:A]. \mforall{}[v,z:Top]. (x : v(y)?z \msim{} if eq x y then v else z fi )
Date html generated:
2015_07_17-AM-11_08_58
Last ObjectModification:
2015_01_28-AM-07_45_05
Home
Index