Nuprl Lemma : fpf-cap-single

[A:Type]. ∀[eq:EqDecider(A)]. ∀[x,y:A]. ∀[v,z:Top].  (x v(y)?z if eq then else fi )


Proof




Definitions occuring in Statement :  fpf-single: v fpf-cap: f(x)?z deq: EqDecider(T) ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top apply: a universe: Type sqequal: t
Lemmas :  deq_member_cons_lemma deq_member_nil_lemma bool_wf eqtt_to_assert safe-assert-deq eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot top_wf deq_wf
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x,y:A].  \mforall{}[v,z:Top].    (x  :  v(y)?z  \msim{}  if  eq  x  y  then  v  else  z  fi  )



Date html generated: 2015_07_17-AM-11_08_58
Last ObjectModification: 2015_01_28-AM-07_45_05

Home Index