Nuprl Lemma : fpf-rename_wf
∀[A,C:Type]. ∀[B:A ─→ Type]. ∀[D:C ─→ Type]. ∀[eq:EqDecider(C)]. ∀[r:A ─→ C]. ∀[f:a:A fp-> B[a]].
  rename(r;f) ∈ c:C fp-> D[c] supposing ∀a:A. (D[r a] = B[a] ∈ Type)
Proof
Definitions occuring in Statement : 
fpf-rename: rename(r;f)
, 
fpf: a:A fp-> B[a]
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
l_member_wf, 
subtype_rel-equal, 
iff_weakening_equal, 
equal_wf, 
hd-filter, 
member_map, 
safe-assert-deq, 
assert_wf
\mforall{}[A,C:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[D:C  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(C)].  \mforall{}[r:A  {}\mrightarrow{}  C].  \mforall{}[f:a:A  fp->  B[a]].
    rename(r;f)  \mmember{}  c:C  fp->  D[c]  supposing  \mforall{}a:A.  (D[r  a]  =  B[a])
Date html generated:
2015_07_17-AM-11_10_38
Last ObjectModification:
2015_02_04-PM-05_15_05
Home
Index