Nuprl Lemma : fpf-rename_wf

[A,C:Type]. ∀[B:A ─→ Type]. ∀[D:C ─→ Type]. ∀[eq:EqDecider(C)]. ∀[r:A ─→ C]. ∀[f:a:A fp-> B[a]].
  rename(r;f) ∈ c:C fp-> D[c] supposing ∀a:A. (D[r a] B[a] ∈ Type)


Proof




Definitions occuring in Statement :  fpf-rename: rename(r;f) fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] member: t ∈ T apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  l_member_wf subtype_rel-equal iff_weakening_equal equal_wf hd-filter member_map safe-assert-deq assert_wf
\mforall{}[A,C:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[D:C  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(C)].  \mforall{}[r:A  {}\mrightarrow{}  C].  \mforall{}[f:a:A  fp->  B[a]].
    rename(r;f)  \mmember{}  c:C  fp->  D[c]  supposing  \mforall{}a:A.  (D[r  a]  =  B[a])



Date html generated: 2015_07_17-AM-11_10_38
Last ObjectModification: 2015_02_04-PM-05_15_05

Home Index