Nuprl Lemma : hd-filter
∀[T:Type]
  ∀P:T ⟶ 𝔹. ∀as:T List.
    ((∃a:T. ((a ∈ as) ∧ (↑P[a])))
    
⇒ ((hd(filter(λa.P[a];as)) ∈ T) c∧ ((hd(filter(λa.P[a];as)) ∈ as) ∧ (↑P[hd(filter(λa.P[a];as))]))))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
hd: hd(l)
, 
filter: filter(P;l)
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
ge: i ≥ j 
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
less_than': less_than'(a;b)
, 
length: ||as||
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
cons: [a / b]
, 
sq_stable: SqStable(P)
Lemmas referenced : 
filter_type, 
length-filter-pos, 
l_exists_iff, 
l_member_wf, 
assert_wf, 
exists_wf, 
list_wf, 
bool_wf, 
hd_wf, 
subtype_rel_list, 
decidable__le, 
length_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
less_than_wf, 
equal_wf, 
hd_member, 
set_wf, 
list-cases, 
product_subtype_list, 
assert_elim, 
null_wf3, 
top_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
member_filter, 
sq_stable__assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
sqequalRule, 
hypothesis, 
setElimination, 
rename, 
setEquality, 
productElimination, 
independent_functionElimination, 
productEquality, 
functionEquality, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
unionElimination, 
imageElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
hypothesis_subsumption, 
addLevel, 
levelHypothesis, 
hyp_replacement, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T:Type]
    \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}as:T  List.
        ((\mexists{}a:T.  ((a  \mmember{}  as)  \mwedge{}  (\muparrow{}P[a])))
        {}\mRightarrow{}  ((hd(filter(\mlambda{}a.P[a];as))  \mmember{}  T)
              c\mwedge{}  ((hd(filter(\mlambda{}a.P[a];as))  \mmember{}  as)  \mwedge{}  (\muparrow{}P[hd(filter(\mlambda{}a.P[a];as))]))))
Date html generated:
2018_05_21-PM-06_50_26
Last ObjectModification:
2017_07_26-PM-04_57_29
Theory : general
Home
Index