Nuprl Lemma : hd-filter

[T:Type]
  ∀P:T ⟶ 𝔹. ∀as:T List.
    ((∃a:T. ((a ∈ as) ∧ (↑P[a])))
     ((hd(filter(λa.P[a];as)) ∈ T) c∧ ((hd(filter(λa.P[a];as)) ∈ as) ∧ (↑P[hd(filter(λa.P[a];as))]))))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) hd: hd(l) filter: filter(P;l) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] cand: c∧ B so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_apply: x[s] uimplies: supposing a so_lambda: λ2x.t[x] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B subtype_rel: A ⊆B ge: i ≥  exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than': less_than'(a;b) length: ||as|| list_ind: list_ind nil: [] it: cons: [a b] sq_stable: SqStable(P)
Lemmas referenced :  filter_type length-filter-pos l_exists_iff l_member_wf assert_wf exists_wf list_wf bool_wf hd_wf subtype_rel_list decidable__le length_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf less_than_wf equal_wf hd_member set_wf list-cases product_subtype_list assert_elim null_wf3 top_wf null_cons_lemma bfalse_wf btrue_neq_bfalse member_filter sq_stable__assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality functionExtensionality cumulativity because_Cache independent_isectElimination dependent_functionElimination sqequalRule hypothesis setElimination rename setEquality productElimination independent_functionElimination productEquality functionEquality universeEquality equalityTransitivity equalitySymmetry natural_numberEquality unionElimination imageElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll promote_hyp hypothesis_subsumption addLevel levelHypothesis hyp_replacement applyLambdaEquality imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type]
    \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.  \mforall{}as:T  List.
        ((\mexists{}a:T.  ((a  \mmember{}  as)  \mwedge{}  (\muparrow{}P[a])))
        {}\mRightarrow{}  ((hd(filter(\mlambda{}a.P[a];as))  \mmember{}  T)
              c\mwedge{}  ((hd(filter(\mlambda{}a.P[a];as))  \mmember{}  as)  \mwedge{}  (\muparrow{}P[hd(filter(\mlambda{}a.P[a];as))]))))



Date html generated: 2018_05_21-PM-06_50_26
Last ObjectModification: 2017_07_26-PM-04_57_29

Theory : general


Home Index