Nuprl Lemma : fpf-sub_transitivity

[A:Type]. ∀[B:A ─→ Type]. ∀[eq:EqDecider(A)]. ∀[f,g,h:a:A fp-> B[a]].  (f ⊆ h) supposing (g ⊆ and f ⊆ g)


Proof




Definitions occuring in Statement :  fpf-sub: f ⊆ g fpf: a:A fp-> B[a] deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type
Lemmas :  assert_elim fpf-dom_wf subtype-fpf2 top_wf subtype_top subtype_base_sq bool_wf bool_subtype_base assert_wf fpf-sub_witness fpf-sub_wf fpf_wf deq_wf
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g,h:a:A  fp->  B[a]].
    (f  \msubseteq{}  h)  supposing  (g  \msubseteq{}  h  and  f  \msubseteq{}  g)



Date html generated: 2015_07_17-AM-09_17_37
Last ObjectModification: 2015_01_28-AM-07_51_43

Home Index