Nuprl Lemma : primed-class-pred

[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[e:E].
  Prior(X) es if 0 <#(X es pred(e)) then es pred(e) else Prior(X) es pred(e) fi  supposing ¬↑first(e)


Proof




Definitions occuring in Statement :  primed-class: Prior(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-first: first(e) es-pred: pred(e) es-E: E assert: b ifthenelse: if then else fi  lt_int: i <j uimplies: supposing a uall: [x:A]. B[x] top: Top not: ¬A apply: a natural_number: $n universe: Type sqequal: t bag-size: #(bs)
Lemmas :  primed-class-cases bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot not_wf assert_wf es-first_wf2 event-ordering+_subtype es-E_wf eclass_wf top_wf event-ordering+_wf

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    Prior(X)  es  e  \msim{}  if  0  <z  \#(X  es  pred(e))  then  X  es  pred(e)  else  Prior(X)  es  pred(e)  fi   
    supposing  \mneg{}\muparrow{}first(e)



Date html generated: 2015_07_21-PM-03_20_34
Last ObjectModification: 2015_01_27-PM-06_44_47

Home Index