Nuprl Lemma : flow-state-compression_wf

[T:Type]. ∀[S:Id List]. ∀[F:information-flow(T;S)]. ∀[A:Type]. ∀[start:{i:Id| (i ∈ S)}  ─→ A]. ∀[c:A ─→ T ─→ A].
[H:{i:Id| (i ∈ S)}  ─→ {i:Id| (i ∈ S)}  ─→ A ─→ (T Top)].
  (flow-state-compression(S;T;F;H;start;c) ∈ ℙ)


Proof




Definitions occuring in Statement :  flow-state-compression: flow-state-compression(S;T;F;H;start;c) information-flow: information-flow(T;S) Id: Id l_member: (x ∈ l) list: List uall: [x:A]. B[x] top: Top prop: member: t ∈ T set: {x:A| B[x]}  function: x:A ─→ B[x] union: left right universe: Type
Lemmas :  all_wf Id_wf l_member_wf list_wf less_than_wf length_wf equal_wf top_wf list_accum_wf information-flow_wf
\mforall{}[T:Type].  \mforall{}[S:Id  List].  \mforall{}[F:information-flow(T;S)].  \mforall{}[A:Type].  \mforall{}[start:\{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  A].
\mforall{}[c:A  {}\mrightarrow{}  T  {}\mrightarrow{}  A].  \mforall{}[H:\{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  \{i:Id|  (i  \mmember{}  S)\}    {}\mrightarrow{}  A  {}\mrightarrow{}  (T  +  Top)].
    (flow-state-compression(S;T;F;H;start;c)  \mmember{}  \mBbbP{})



Date html generated: 2015_07_17-AM-08_58_23
Last ObjectModification: 2015_01_27-PM-01_02_34

Home Index