Nuprl Lemma : member-ite

b:𝔹. ∀[T:Type]. ∀A,B:T List. ∀x:T.  ((x ∈ if then else fi ⇐⇒ ((↑b) ∧ (x ∈ A)) ∨ ((¬↑b) ∧ (x ∈ B)))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List assert: b ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A or: P ∨ Q and: P ∧ Q universe: Type
Lemmas :  bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
\mforall{}b:\mBbbB{}
    \mforall{}[T:Type]
        \mforall{}A,B:T  List.  \mforall{}x:T.    ((x  \mmember{}  if  b  then  A  else  B  fi  )  \mLeftarrow{}{}\mRightarrow{}  ((\muparrow{}b)  \mwedge{}  (x  \mmember{}  A))  \mvee{}  ((\mneg{}\muparrow{}b)  \mwedge{}  (x  \mmember{}  B)))



Date html generated: 2015_07_17-AM-09_04_57
Last ObjectModification: 2015_01_27-PM-00_53_21

Home Index