Nuprl Lemma : sv-bag-tail-single-valued

[A:Type]. ∀[bs:bag(A)].  (single-valued-bag(bs;A)  0 < #(bs)  single-valued-bag(sv-bag-tail(bs);A))


Proof




Definitions occuring in Statement :  sv-bag-tail: sv-bag-tail(bs) less_than: a < b uall: [x:A]. B[x] implies:  Q natural_number: $n universe: Type single-valued-bag: single-valued-bag(b;T) bag-size: #(bs) bag: bag(T)
Lemmas :  less_than_wf bag-size_wf nat_wf single-valued-bag_wf bag-member_wf sv-bag-tail_wf bag_wf single-valued-bag-sv-list single-valued-bag-is-list sv-list-tail single-valued-list-sv-bag tl_wf

Latex:
\mforall{}[A:Type].  \mforall{}[bs:bag(A)].
    (single-valued-bag(bs;A)  {}\mRightarrow{}  0  <  \#(bs)  {}\mRightarrow{}  single-valued-bag(sv-bag-tail(bs);A))



Date html generated: 2015_07_23-AM-11_26_25
Last ObjectModification: 2015_01_28-PM-11_14_29

Home Index