Nuprl Lemma : system-equiv-is-equiv

[M:Type ─→ Type]. EquivRel(System(P.M[P]);S1,S2.system-equiv(P.M[P];S1;S2)) supposing Continuous+(P.M[P])


Proof




Definitions occuring in Statement :  system-equiv: system-equiv(T.M[T];S1;S2) System: System(P.M[P]) equiv_rel: EquivRel(T;x,y.E[x; y]) strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type
Lemmas :  nat_wf process-equiv-is-equiv length_wf component_wf int_seg_properties select_wf int_seg_wf System_wf less_than_transitivity1 le_weakening lelt_wf sq_stable__le Id_wf process-equiv_wf system-equiv_wf list_wf pMsg_wf strong-type-continuous_wf

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    EquivRel(System(P.M[P]);S1,S2.system-equiv(P.M[P];S1;S2))  supposing  Continuous+(P.M[P])



Date html generated: 2015_07_23-AM-11_08_17
Last ObjectModification: 2015_01_29-AM-00_09_10

Home Index