Nuprl Lemma : system-equiv-is-equiv
∀[M:Type ─→ Type]. EquivRel(System(P.M[P]);S1,S2.system-equiv(P.M[P];S1;S2)) supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
system-equiv: system-equiv(T.M[T];S1;S2)
, 
System: System(P.M[P])
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
strong-type-continuous: Continuous+(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
nat_wf, 
process-equiv-is-equiv, 
length_wf, 
component_wf, 
int_seg_properties, 
select_wf, 
int_seg_wf, 
System_wf, 
less_than_transitivity1, 
le_weakening, 
lelt_wf, 
sq_stable__le, 
Id_wf, 
process-equiv_wf, 
system-equiv_wf, 
list_wf, 
pMsg_wf, 
strong-type-continuous_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    EquivRel(System(P.M[P]);S1,S2.system-equiv(P.M[P];S1;S2))  supposing  Continuous+(P.M[P])
Date html generated:
2015_07_23-AM-11_08_17
Last ObjectModification:
2015_01_29-AM-00_09_10
Home
Index