Nuprl Lemma : rotate-ring-property2

[T:Type]. L:T List. i:.  ((i < ||L||)  rotate-ring(T;L;nth_tl(i;L) @ firstn(i;L)))


Proof not projected




Definitions occuring in Statement :  rotate-ring: rotate-ring(T;L1;L2) firstn: firstn(n;as) nth_tl: nth_tl(n;as) length: ||as|| append: as @ bs nat: uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q less_than: a < b list: type List universe: Type
Definitions :  function: x:A  B[x] all: x:A. B[x] member: t  T nat: int: less_than: a < b prop: equal: s = t universe: Type list: type List set: {x:A| B[x]}  int_seg: {i..j} product: x:A  B[x] exists: x:A. B[x] and: P  Q rotate-ring: rotate-ring(T;L1;L2) implies: P  Q isect: x:A. B[x] uall: [x:A]. B[x] subtype: S  T grp_car: |g| real: length: ||as|| ifthenelse: if b then t else f fi  tactic: Error :tactic,  MaAuto: Error :MaAuto,  not: A uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B false: False le: A  B ge: i  j  strong-subtype: strong-subtype(A;B) nil: [] fpf: a:A fp-B[a] pair: <a, b> eclass: EClass(A[eo; e]) nth_tl: nth_tl(n;as) firstn: firstn(n;as) append: as @ bs int_iseg: {i...j} natural_number: $n void: Void top: Top D: Error :D,  Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  rationals: lelt: i  j < k lt_int: i <z j add: n + m limited-type: LimitedType select: l[i] cand: A c B subtract: n - m minus: -n intensional-universe: IType bool: union: left + right unit: Unit bnot: b assert: b bor: p q band: p  q bimplies: p  q es-ble: e loc e' es-bless: e <loc e' es-eq-E: e = e' eq_lnk: a = b eq_id: a = b name_eq: name_eq(x;y) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) deq-member: deq-member(eq;x;L) q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_atom: eq_atom$n(x;y) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] infix_ap: x f y apply: f a grp_blt: a < b set_blt: a < b null: null(as) eq_atom: x =a y eq_int: (i = j) le_int: i z j btrue: tt bfalse: ff l_member: (x  l) guard: {T} or: P  Q so_apply: x[s] iff: P  Q rev_implies: P  Q squash: T true: True
Lemmas :  select_firstn squash_wf select_nth_tl select_append rev_implies_wf iff_wf bnot_wf le_int_wf assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff eqff_to_assert assert_wf assert_of_lt_int eqtt_to_assert uiff_transitivity bool_wf subtype_rel_wf intensional-universe_wf lt_int_wf select_wf int_seg_properties nat_properties length_wf_nat nth_tl_wf top_wf append_wf member_wf firstn_wf le_wf false_wf not_wf non_neg_length length_append length_firstn length_nth_tl int_seg_wf ifthenelse_wf nat_wf length_wf

\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}i:\mBbbN{}.    ((i  <  ||L||)  {}\mRightarrow{}  rotate-ring(T;L;nth\_tl(i;L)  @  firstn(i;L)))


Date html generated: 2012_02_20-PM-05_54_50
Last ObjectModification: 2012_02_02-PM-02_29_14

Home Index