Nuprl Lemma : vr_test2

x:. n:. (x < n)


Proof not projected




Definitions occuring in Statement :  nat: all: x:A. B[x] exists: x:A. B[x] rless: x < y real:
Definitions :  tactic: Error :tactic,  CollapseTHENA: Error :CollapseTHENA,  Auto: Error :Auto,  exists: x:A. B[x] product: x:A  B[x] real: all: x:A. B[x] function: x:A  B[x] member: t  T equal: s = t rleq: x  y rabs: |x| Unfold: Error :Unfold,  CollapseTHEN: Error :CollapseTHEN,  rminus: -(r) uall: [x:A]. B[x] nat: qle: r  s rnonneg: rnonneg(r) isect: x:A. B[x] subtype_rel: A r B uiff: uiff(P;Q) and: P  Q uimplies: b supposing a less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) b-union: A  B tunion: x:A.B[x] reals: [] rmax: rmax(r;s) add: n + m D: Error :D,  MaAuto: Error :MaAuto,  natural_number: $n rless: x < y grp_leq: a  b assert: b infix_ap: x f y apply: f a grp_le: qadd_grp: <+> pair: <a, b> lambda: x.A[x] ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] nat_plus: prop: int: subtype: S  T rationals: set: {x:A| B[x]}  false: False implies: P  Q void: Void universe: Type int_nzero: rpositive: rpositive(r) qless: r < s iff: P  Q rev_implies: P  Q rsub: x - y qdiv: (r/s) length: ||as|| p-outcome: Outcome bool: quotient: x,y:A//B[x; y] eclass: EClass(A[eo; e]) es-E-interface: E(X) fpf: a:A fp-B[a] btrue: tt union: left + right fpf-cap: f(x)?z true: True top: Top list: type List bag: bag(T) isect2: T1  T2 dataflow: dataflow(A;B) fset: FSet{T} record: record(x.T[x]) record+: record+ labeled-graph: LabeledGraph(T) ldag: LabeledDAG(T) or: P  Q tag-by: zT spread: spread def infinitesmal: Infinitesmal sqequal: s ~ t valueall-type: valueall-type(T) bfalse: ff so_lambda: x.t[x] radd: r + s rmul: r * s req: x = y rev_uimplies: rev_uimplies(P;Q) limited-type: LimitedType qeq: qeq(r;s) sq_type: SQType(T) qmul: r * s minus: -n reg-tolerance: (r;n) reg-approx: r(n) intensional-universe: IType qabs: |r| qsub: r - s qadd: r + s inf-apply: m(x) grp_car: |g| subtract: n - m squash: T
Lemmas :  rabs_wf1 rleq_transitivity true_wf squash_wf rev_implies_wf iff_wf vr_req_to_ieq vr_rsub_to_sub nat_inc_real int-equal-in-rationals rational-is-real intensional-universe_wf reg-approx_wf reg-tolerance_wf qmul_wf nat_plus_properties subtype_base_sq qdiv-self reals_wf radd_wf rsub_wf qeq_wf2 assert-qeq uiff_wf not_functionality_wrt_uiff assert_wf int_inc rationals_inc qdiv_wf radd_wf1 radd-rminus-assoc radd-comm radd_functionality req_weakening rleq_functionality uiff_transitivity radd-preserves-rleq tunion_wf bfalse_wf infinitesmal_wf ifthenelse_wf btrue_wf int-rational subtype_rel_wf rationals_wf bool_wf b-union_wf int_nzero_wf rleq-rational integer-bound not_wf false_wf member_wf le_wf rless-iff-rleq int_inc_real rless_wf rpositive_wf qless_wf nat_plus_wf rminus_wf1 rleq-rmax nat_wf qle_wf rnonneg_wf rleq_wf real_wf

\mforall{}x:\mBbbR{}.  \mexists{}n:\mBbbN{}.  (x  <  n)


Date html generated: 2012_02_20-PM-03_32_40
Last ObjectModification: 2012_02_02-PM-01_55_07

Home Index