Nuprl Lemma : Paxos-spec6-properties

[Info:Type]
  es:EO+(Info)
    [T:Type]
      leader:  Id. failset:Id List. Reserve:EClass(). Decide,Input:EClass(T).
        (Paxos-spec6{i:l}(Info; es; T; leader; failset; Reserve; Decide; Input)
         (Decide values come from Input values
            Consistent(Decide)
            (Finitely many leaders
              (ldr:Id. (((ldr  failset))  eventually ldr is the only leader  (n:E(Input). (loc(n) = ldr))))
              (d:E. (d  Decide)))))


Proof not projected




Definitions occuring in Statement :  eventually-one-leader: eventually ldr is the only leader leaders-finite: Finitely many leaders Paxos-spec6: Paxos-spec6{i:l}(Info; es; T; leader; failset; Reserve; Decide; Input) consensus-spec2: Decide values come from Input values consensus-spec1: Consistent(Decide) es-E-interface: E(X) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) es-E: E Id: Id assert: b nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] not: A implies: P  Q and: P  Q function: x:A  B[x] list: type List universe: Type equal: s = t l_member: (x  l)
Definitions :  guard: {T} btrue: tt sq_type: SQType(T) true: True fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) rev_implies: P  Q or: P  Q limited-type: LimitedType decide: case b of inl(x) =s[x] | inr(y) =t[y] ge: i  j  uiff: uiff(P;Q) subtype_rel: A r B atom: Atom es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x void: Void false: False atom: Atom$n cand: A c B dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ union: left + right alle-lt: e<e'.P[e] less_than: a < b es-le: e loc e'  iff: P  Q es-class-causal-mrel-fail: es-class-causal-mrel-fail es-class-def: es-class-def es-class-causal-rel-fail: es-class-causal-rel-fail le: A  B no_repeats: no_repeats(T;l) l_all: (xL.P[x]) Paxos-spec6-body: Paxos-spec6-body int: bool: paxos-acceptor-state: AcceptorState nat_plus: subtype: S  T lambda: x.A[x] Paxos-spec5: Paxos-spec5{i:l}(Info; es; T; Decide; Input) in-eclass: e  X member: t  T set: {x:A| B[x]}  prop: list: type List so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) Paxos-spec6: Paxos-spec6{i:l}(Info; es; T; leader; failset; Reserve; Decide; Input) consensus-spec2: Decide values come from Input values consensus-spec1: Consistent(Decide) leaders-finite: Finitely many leaders l_member: (x  l) top: Top es-E-interface: E(X) isect: x:A. B[x] uall: [x:A]. B[x] so_lambda: x.t[x] implies: P  Q function: x:A  B[x] assert: b es-E: E event-ordering+: EO+(Info) event_ordering: EO and: P  Q product: x:A  B[x] exists: x:A. B[x] sqequal: s ~ t MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  RepeatFor: Error :RepeatFor,  apply: f a leader-eventually-retires: l eventually retires es-loc: loc(e) Id: Id equal: s = t not: A uimplies: b supposing a nat: all: x:A. B[x] AssertBY: Error :AssertBY,  eventually-one-leader: eventually ldr is the only leader ExRepD: Error :ExRepD,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  Try: Error :Try,  universe: Type THENM: Error :THENM
Lemmas :  atom2_subtype_base consensus-spec2_wf consensus-spec1_wf leaders-finite_wf Id_wf not_wf l_member_wf eventually-one-leader_wf es-E-interface_wf es-E_wf assert_wf event-ordering+_wf uall_wf nat_wf eclass_wf Paxos-spec6_wf Paxos-spec6-implies-Paxos-spec5 event-ordering+_inc Paxos-spec5-safety member_wf es-interface-top es-loc_wf es-base-E_wf subtype_rel_self leader-eventually-retires_wf Paxos-spec6-non-blocking false_wf in-eclass_wf subtype_rel_wf ifthenelse_wf true_wf bool_wf subtype_base_sq bool_subtype_base assert_elim

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info)
        \mforall{}[T:Type]
            \mforall{}leader:\mBbbN{}  {}\mrightarrow{}  Id.  \mforall{}failset:Id  List.  \mforall{}Reserve:EClass(\mBbbN{}).  \mforall{}Decide,Input:EClass(T).
                (Paxos-spec6\{i:l\}(Info;  es;  T;  leader;  failset;  Reserve;  Decide;  Input)
                {}\mRightarrow{}  (Decide  values  come  from  Input  values
                      \mwedge{}  Consistent(Decide)
                      \mwedge{}  (Finitely  many  leaders
                          {}\mRightarrow{}  (\mexists{}ldr:Id
                                    ((\mneg{}(ldr  \mmember{}  failset))
                                    \mwedge{}  eventually  ldr  is  the  only  leader
                                    \mwedge{}  (\mexists{}n:E(Input).  (loc(n)  =  ldr))))
                          {}\mRightarrow{}  (\mexists{}d:E.  (\muparrow{}d  \mmember{}\msubb{}  Decide)))))


Date html generated: 2011_10_20-PM-04_43_14
Last ObjectModification: 2011_06_18-PM-02_09_43

Home Index