{ [V:Type]
    A:Id List. t:. f:V List  V. v0:V. L:consensus-rcv(V;A) List. n:.
    v:V.
      (archive-condition(V;A;t;f;n;v;L)
       let b,i,as,vs,w = list_accum(s,r.consensus-accum-num((2 * t)
                                           + 1;f;s;r);
                                       <ff, 0, [], [], v0>;
                                       L) in (b)  ((n + 1) = i)  (v = w)) }

{ Proof }



Definitions occuring in Statement :  consensus-accum-num: consensus-accum-num(num;f;s;r) archive-condition: archive-condition(V;A;t;f;n;v;L) consensus-rcv: consensus-rcv(V;A) Id: Id assert: b bfalse: ff nat_plus: nat: spreadn: let a,b,c,d,e = u in v[a; b; c; d; e] uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q and: P  Q function: x:A  B[x] pair: <a, b> nil: [] list: type List multiply: n * m add: n + m natural_number: $n int: universe: Type equal: s = t list_accum: list_accum(x,a.f[x; a];y;l)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] member: t  T implies: P  Q assert: b pi1: fst(t) spreadn: let a,b,c,d,e = u in v[a; b; c; d; e] prop: btrue: tt ifthenelse: if b then t else f fi  bfalse: ff uimplies: b supposing a true: True so_lambda: x.t[x] iff: P  Q and: P  Q rev_implies: P  Q squash: T false: False bool: unit: Unit so_apply: x[s] nat: guard: {T} consensus-accum-num-state: consensus-accum-num-state(t;f;v0;L) subtype: S  T it:
Lemmas :  consensus-accum-num-archives archive-consensus-accum-num consensus-rcv_wf nat_plus_wf Id_wf consensus-accum-num-state_wf nat_plus_inc bool_wf l_member_wf iff_weakening_uiff assert_wf eqtt_to_assert not_wf uiff_transitivity bnot_wf eqff_to_assert assert_of_bnot nat_wf true_wf archive-condition_wf uall_wf archive-condition-one-one squash_wf false_wf nat_properties

\mforall{}[V:Type]
    \mforall{}A:Id  List.  \mforall{}t:\mBbbN{}\msupplus{}.  \mforall{}f:V  List  {}\mrightarrow{}  V.  \mforall{}v0:V.  \mforall{}L:consensus-rcv(V;A)  List.  \mforall{}n:\mBbbN{}.  \mforall{}v:V.
        (archive-condition(V;A;t;f;n;v;L)
        \mLeftarrow{}{}\mRightarrow{}  let  b,i,as,vs,w  =  list\_accum(s,r.consensus-accum-num((2  *  t)  +  1;f;s;r);
                                                                          <ff,  0,  [],  [],  v0>
                                                                          L)  in  (\muparrow{}b)  \mwedge{}  ((n  +  1)  =  i)  \mwedge{}  (v  =  w))


Date html generated: 2011_08_16-AM-10_16_36
Last ObjectModification: 2011_06_18-AM-09_06_41

Home Index