{ es:EO
    [R:{R:E  E  | e,e':E.  (R[e;e']  (e' < e))} ]
      ((e,e':E.  Dec(R[e;e']))
       (p:E  (E + Top)
           (causal-predecessor(es;p)
            (e:E
                ((can-apply(p;e)  e':E. R[e;e'])
                 R[e;do-apply(p;e)] supposing can-apply(p;e)))))) }

{ Proof }



Definitions occuring in Statement :  causal-predecessor: causal-predecessor(es;p) es-causl: (e < e') es-E: E event_ordering: EO assert: b decidable: Dec(P) uimplies: b supposing a uall: [x:A]. B[x] top: Top prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] iff: P  Q implies: P  Q and: P  Q set: {x:A| B[x]}  function: x:A  B[x] union: left + right do-apply: do-apply(f;x) can-apply: can-apply(f;x)
Definitions :  strong-subtype: strong-subtype(A;B) equal: s = t member: t  T le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) eq_atom: x =a y eq_atom: eq_atom$n(x;y) record-select: r.x infix_ap: x f y dep-isect: Error :dep-isect,  record+: record+ subtype_rel: A r B top: Top causal-predecessor: causal-predecessor(es;p) iff: P  Q assert: b uimplies: b supposing a and: P  Q or: P  Q event_ordering: EO uall: [x:A]. B[x] isect: x:A. B[x] es-causl: (e < e') universe: Type set: {x:A| B[x]}  implies: P  Q apply: f a prop: product: x:A  B[x] union: left + right function: x:A  B[x] so_apply: x[s1;s2] es-E: E exists: x:A. B[x] decidable: Dec(P) all: x:A. B[x] lambda: x.A[x] so_lambda: x.t[x] es-le: e loc e'  es-causle: e c e' es-locl: (e <loc e') record: record(x.T[x]) cand: A c B false: False guard: {T} true: True existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y squash: T fpf-sub: f  g modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) partitions: partitions(I;p) sq_stable: SqStable(P) i-member: r  I do-apply: do-apply(f;x) suptype: suptype(S; T) can-apply: can-apply(f;x) limited-type: LimitedType fpf: a:A fp-B[a] list: type List void: Void unit: Unit subtype: S  T it: inr: inr x  pi1: fst(t) inl: inl x  decide: case b of inl(x) =s[x] | inr(y) =t[y] rev_implies: P  Q pair: <a, b> bool: axiom: Ax natural_number: $n int: outl: outl(x)
Lemmas :  true_wf member_wf pi1_wf_top subtype_rel_wf unit_wf it_wf can-apply_wf do-apply_wf sq_stable_from_decidable decidable__es-causl not_wf false_wf decidable__existse-causl assert_wf iff_wf causal-predecessor_wf top_wf decidable_wf es-E_wf es-causl_wf event_ordering_wf

\mforall{}es:EO
    \mforall{}[R:\{R:E  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}|  \mforall{}e,e':E.    (R[e;e']  {}\mRightarrow{}  (e'  <  e))\}  ]
        ((\mforall{}e,e':E.    Dec(R[e;e']))
        {}\mRightarrow{}  (\mexists{}p:E  {}\mrightarrow{}  (E  +  Top)
                  (causal-predecessor(es;p)
                  \mwedge{}  (\mforall{}e:E
                            ((\muparrow{}can-apply(p;e)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}e':E.  R[e;e'])
                            \mwedge{}  R[e;do-apply(p;e)]  supposing  \muparrow{}can-apply(p;e))))))


Date html generated: 2011_08_16-AM-11_12_56
Last ObjectModification: 2011_06_20-AM-00_20_35

Home Index