{ [V:Type]. [A:Id List]. [W:{a:Id| (a  A)}  List List].
  [f:ConsensusState  (consensus-state3(V) List)].
    [x,y:ConsensusState]. [i:||f x||].
      (f x[i] = f y[i]) supposing 
         ((v:V
             ((in state x, inning i could commit v 
              in state y, inning i could commit v )
              (in state x, inning i has committed v
                in state y, inning i has committed v))) and 
         (i < ||f y||)) 
    supposing cs-ref-map-constraints(V;A;W;f) }

{ Proof }



Definitions occuring in Statement :  cs-ref-map-constraints: cs-ref-map-constraints(V;A;W;f) cs-inning-committable: in state s, inning i could commit v  cs-inning-committed: in state s, inning i has committed v consensus-state4: ConsensusState consensus-state3: consensus-state3(T) Id: Id select: l[i] length: ||as|| int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: P  Q and: P  Q less_than: a < b set: {x:A| B[x]}  apply: f a function: x:A  B[x] list: type List natural_number: $n universe: Type equal: s = t l_member: (x  l)
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a all: x:A. B[x] and: P  Q iff: P  Q member: t  T le: A  B not: A implies: P  Q false: False rev_implies: P  Q prop: nat: exists: x:A. B[x] cand: A c B so_lambda: x.t[x] cs-ref-map-constraints: cs-ref-map-constraints(V;A;W;f) int_seg: {i..j} lelt: i  j < k or: P  Q guard: {T} so_apply: x[s]
Lemmas :  cs-inning-committable_wf cs-inning-committed_wf le_wf iff_wf length_wf1 consensus-state3_wf int_seg_wf consensus-state4_wf cs-ref-map-constraints_wf Id_wf l_member_wf cs-inning_wf select_wf cs-initial_wf not_wf cs-withdrawn_wf cs-commited_wf cs-considering_wf consensus-state3-cases and_functionality_wrt_iff implies_functionality_wrt_iff iff_functionality_wrt_iff exists_functionality_wrt_iff not_functionality_wrt_iff all_functionality_wrt_iff

\mforall{}[V:Type].  \mforall{}[A:Id  List].  \mforall{}[W:\{a:Id|  (a  \mmember{}  A)\}    List  List].
\mforall{}[f:ConsensusState  {}\mrightarrow{}  (consensus-state3(V)  List)].
    \mforall{}[x,y:ConsensusState].  \mforall{}[i:\mBbbN{}||f  x||].
        (f  x[i]  =  f  y[i])  supposing 
              ((\mforall{}v:V
                      ((in  state  x,  inning  i  could  commit  v    \mLeftarrow{}{}\mRightarrow{}  in  state  y,  inning  i  could  commit  v  )
                      \mwedge{}  (in  state  x,  inning  i  has  committed  v  \mLeftarrow{}{}\mRightarrow{}  in  state  y,  inning  i  has  committed  v)))  and 
              (i  <  ||f  y||)) 
    supposing  cs-ref-map-constraints(V;A;W;f)


Date html generated: 2011_08_16-AM-10_04_09
Last ObjectModification: 2011_06_18-AM-09_00_47

Home Index