Nuprl Lemma : exists_functionality_wrt_iff
∀[S,T:Type]. ∀[P,Q:S ⟶ ℙ]. (∀x:S. (P[x]
⇐⇒ Q[x]))
⇒ (∃x:S. P[x]
⇐⇒ ∃y:T. Q[y]) supposing S = T ∈ Type
Proof
Definitions occuring in Statement :
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
Lemmas referenced :
equal_wf,
iff_wf,
all_wf,
exists_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
cut,
introduction,
axiomEquality,
hypothesis,
thin,
rename,
lambdaFormation,
independent_pairFormation,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
applyEquality,
cumulativity,
hyp_replacement,
equalitySymmetry,
because_Cache,
instantiate,
universeEquality,
functionEquality,
productElimination,
dependent_pairFormation,
dependent_functionElimination,
independent_functionElimination
Latex:
\mforall{}[S,T:Type]. \mforall{}[P,Q:S {}\mrightarrow{} \mBbbP{}]. (\mforall{}x:S. (P[x] \mLeftarrow{}{}\mRightarrow{} Q[x])) {}\mRightarrow{} (\mexists{}x:S. P[x] \mLeftarrow{}{}\mRightarrow{} \mexists{}y:T. Q[y]) supposing S = T
Date html generated:
2016_05_13-PM-03_12_28
Last ObjectModification:
2016_01_06-PM-05_24_21
Theory : core_2
Home
Index