Nuprl Lemma : exists_functionality_wrt_iff

[S,T:Type]. ∀[P,Q:S ⟶ ℙ].  (∀x:S. (P[x] ⇐⇒ Q[x]))  (∃x:S. P[x] ⇐⇒ ∃y:T. Q[y]) supposing T ∈ Type


Proof




Definitions occuring in Statement :  uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q iff: ⇐⇒ Q and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] all: x:A. B[x]
Lemmas referenced :  equal_wf iff_wf all_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction axiomEquality hypothesis thin rename lambdaFormation independent_pairFormation lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality applyEquality cumulativity hyp_replacement equalitySymmetry because_Cache instantiate universeEquality functionEquality productElimination dependent_pairFormation dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[S,T:Type].  \mforall{}[P,Q:S  {}\mrightarrow{}  \mBbbP{}].    (\mforall{}x:S.  (P[x]  \mLeftarrow{}{}\mRightarrow{}  Q[x]))  {}\mRightarrow{}  (\mexists{}x:S.  P[x]  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  Q[y])  supposing  S  =  T



Date html generated: 2016_05_13-PM-03_12_28
Last ObjectModification: 2016_01_06-PM-05_24_21

Theory : core_2


Home Index