{ [Info,A:Type]. [P:eo:EO+(Info)  E  A  ].
    ((eo:EO+(Info). e:E.  Dec(a:A. P[eo;e;a]))
     (X:EClass(A)
         eo:EO+(Info). e:E.
           ((e  X  a:A. P[eo;e;a])  P[eo;e;X(e)] supposing e  X))) }

{ Proof }



Definitions occuring in Statement :  eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b decidable: Dec(P) uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] all: x:A. B[x] exists: x:A. B[x] iff: P  Q implies: P  Q and: P  Q function: x:A  B[x] universe: Type
Definitions :  intensional-universe: IType so_lambda: x.t[x] tag-by: zT fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B list: type List fpf-cap: f(x)?z bool: record: record(x.T[x]) es-E-interface: E(X) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T sq_stable: SqStable(P) cond-class: [X?Y] so_apply: x[s] guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) cand: A c B fpf: a:A fp-B[a] set: {x:A| B[x]}  false: False true: True eclass-val: X(e) rev_implies: P  Q in-eclass: e  X eq_atom: eq_atom$n(x;y) atom: Atom es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x inr: inr x  void: Void pair: <a, b> inl: inl x  top: Top dep-isect: Error :dep-isect,  record+: record+ subtype: S  T equal: s = t member: t  T strong-subtype: strong-subtype(A;B) union: left + right or: P  Q le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) subtype_rel: A r B so_lambda: x y.t[x; y] iff: P  Q assert: b uimplies: b supposing a and: P  Q so_apply: x[s1;s2;s3] uall: [x:A]. B[x] isect: x:A. B[x] es-E: E event_ordering: EO event-ordering+: EO+(Info) exists: x:A. B[x] product: x:A  B[x] eclass: EClass(A[eo; e]) bag: bag(T) quotient: x,y:A//B[x; y] prop: universe: Type implies: P  Q all: x:A. B[x] function: x:A  B[x] decidable: Dec(P) empty-bag: {} pi1: fst(t) single-bag: {x} apply: f a decide: case b of inl(x) =s[x] | inr(y) =t[y] lambda: x.A[x] bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} axiom: Ax natural_number: $n int: eq_int: (i = j) bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) limited-type: LimitedType Auto: Error :Auto,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  RepUR: Error :RepUR,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  tactic: Error :tactic
Lemmas :  not_wf eclass_wf member_wf in-eclass_wf assert_wf assert_witness es-E_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf empty-bag_wf pi1_wf_top single-bag_wf iff_wf decidable_wf false_wf ifthenelse_wf true_wf rev_implies_wf top_wf sq_stable__assert bool_wf subtype_rel_wf intensional-universe_wf es-interface-top eclass-val_wf

\mforall{}[Info,A:Type].  \mforall{}[P:eo:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}eo:EO+(Info).  \mforall{}e:E.    Dec(\mexists{}a:A.  P[eo;e;a]))
    {}\mRightarrow{}  (\mexists{}X:EClass(A)
              \mforall{}eo:EO+(Info).  \mforall{}e:E.    ((\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:A.  P[eo;e;a])  \mwedge{}  P[eo;e;X(e)]  supposing  \muparrow{}e  \mmember{}\msubb{}  X)))


Date html generated: 2011_08_16-PM-04_07_30
Last ObjectModification: 2011_06_20-AM-00_41_14

Home Index