{ [Info:Type]
    es:EO+(Info). Sys:EClass(Top). f:sys-antecedent(es;Sys). y,x:E(Sys).
    i:Id.
      Dec(x-f*-y thru i) }

{ Proof }



Definitions occuring in Statement :  path-goes-thru: x-f*-y thru i sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) Id: Id decidable: Dec(P) uall: [x:A]. B[x] top: Top all: x:A. B[x] universe: Type
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] member: t  T nat: implies: P  Q guard: {T} prop: so_lambda: x y.t[x; y] ge: i  j  le: A  B not: A false: False squash: T true: True decidable: Dec(P) or: P  Q path-goes-thru: x-f*-y thru i exists: x:A. B[x] and: P  Q cand: A c B assert: b btrue: tt ifthenelse: if b then t else f fi  es-E-interface: E(X) strongwellfounded: SWellFounded(R[x; y]) so_apply: x[s1;s2] sys-antecedent: sys-antecedent(es;Sys) sq_stable: SqStable(P) uimplies: b supposing a es-causle: e c e' sq_type: SQType(T) subtype: S  T
Lemmas :  es-causl-swellfnd event-ordering+_inc nat_wf le_wf es-E-interface_wf sys-antecedent_wf eclass_wf top_wf es-E_wf event-ordering+_wf es-causl_wf nat_properties ge_wf decidable__equal_Id es-loc_wf Id_wf decidable__fun-connected es-causle-interface-retraction decidable__equal_es-E-interface sq_stable_from_decidable es-causle_wf es-E-interface-subtype_rel decidable__es-causle not_wf path-goes-thru_wf fun-connected_weakening_eq fun-connected_wf fun-connected_transitivity fun-connected-fixedpoint decidable__es-causl subtype_base_sq bool_wf bool_subtype_base assert_elim assert_wf in-eclass_wf fun-connected-step fun-connected-step-back

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}Sys:EClass(Top).  \mforall{}f:sys-antecedent(es;Sys).  \mforall{}y,x:E(Sys).  \mforall{}i:Id.
        Dec(x-f*-y  thru  i)


Date html generated: 2011_08_16-PM-06_02_19
Last ObjectModification: 2011_06_20-AM-01_45_39

Home Index