{ 
[A:Type]. 
[p,q:DataflowProgram(A)].
    df-program-meaning(p) = df-program-meaning(q) 
    supposing (df-program-type(p) = df-program-type(q))
    
 (
R:df-program-statetype(p)? 
 df-program-statetype(q)? 
 
        df-prog-equiv(A;p;q;s1,s2.R[s1;s2])) }
{ Proof }
Definitions occuring in Statement : 
df-prog-equiv: df-prog-equiv(A;p;q;s1,s2.R[s1; s2]), 
df-program-meaning: df-program-meaning(dfp), 
df-program-statetype: df-program-statetype(dfp), 
df-program-type: df-program-type(dfp), 
dataflow-program: DataflowProgram(A), 
dataflow: dataflow(A;B), 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
prop:
, 
so_apply: x[s1;s2], 
exists:
x:A. B[x], 
and: P 
 Q, 
unit: Unit, 
function: x:A 
 B[x], 
union: left + right, 
universe: Type, 
equal: s = t, 
bag: bag(T)
Definitions : 
tactic: Error :tactic, 
RepeatFor: Error :RepeatFor, 
RepUR: Error :RepUR, 
bag: bag(T), 
union: left + right, 
unit: Unit, 
so_lambda: 
x y.t[x; y], 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
apply: f a, 
pair: <a, b>, 
empty-bag: {}, 
inl: inl x , 
MaAuto: Error :MaAuto, 
CollapseTHENA: Error :CollapseTHENA, 
Repeat: Error :Repeat, 
CollapseTHEN: Error :CollapseTHEN, 
D: Error :D, 
Auto: Error :Auto, 
member: t 
 T, 
and: P 
 Q, 
isect:
x:A. B[x], 
prop:
, 
universe: Type, 
equal: s = t, 
df-program-statetype: df-program-statetype(dfp), 
function: x:A 
 B[x], 
so_apply: x[s1;s2], 
df-prog-equiv: df-prog-equiv(A;p;q;s1,s2.R[s1; s2]), 
product: x:A 
 B[x], 
exists:
x:A. B[x], 
uimplies: b supposing a, 
dataflow-program: DataflowProgram(A), 
uall:
[x:A]. B[x], 
dataflow: dataflow(A;B), 
df-program-type: df-program-type(dfp), 
df-program-meaning: df-program-meaning(dfp), 
axiom: Ax, 
all:
x:A. B[x], 
subtype_rel: A 
r B, 
uiff: uiff(P;Q), 
less_than: a < b, 
not:
A, 
ge: i 
 j , 
le: A 
 B, 
strong-subtype: strong-subtype(A;B), 
fpf: a:A fp-> B[a], 
limited-type: LimitedType, 
lambda:
x.A[x], 
squash:
T, 
true: True, 
so_lambda: 
x.t[x], 
assert:
b, 
l_member: (x 
 l), 
list: type List, 
guard: {T}, 
or: P 
 Q, 
implies: P 
 Q, 
so_apply: x[s], 
rationals:
, 
Id: Id, 
IdLnk: IdLnk, 
Knd: Knd, 
cand: A c
 B, 
bool:
, 
spread: spread def, 
set: {x:A| B[x]} , 
df-program-in-state-ap': df-program-in-state-ap'(dfp;s;m), 
df-program-state: df-program-state(dfp), 
df-program-in-state-ap: df-program-in-state-ap(dfp;s;m), 
pi2: snd(t), 
ifthenelse: if b then t else f fi , 
isl: isl(x), 
outl: outl(x), 
valueall-type: valueall-type(T), 
inr: inr x , 
subtype: S 
 T, 
quotient: x,y:A//B[x; y], 
sq_stable: SqStable(P), 
fpf-sub: f 
 g, 
modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f), 
partitions: partitions(I;p), 
i-member: r 
 I, 
rleq: x 
 y, 
rnonneg: rnonneg(r), 
req: x = y, 
bag-member: bag-member(T;x;bs), 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x), 
is_list_splitting: is_list_splitting(T;L;LL;L2;f), 
b-union: A 
 B, 
tunion:
x:A.B[x], 
rec: rec(x.A[x]), 
atom: Atom, 
int:
, 
atom: Atom$n, 
natural_number: $n, 
value-type: value-type(T), 
no_repeats: no_repeats(T;l), 
prime_ideal_p: IsPrimeIdeal(R;P), 
integ_dom_p: IsIntegDom(r), 
grp_leq: a 
 b, 
monoid_hom_p: IsMonHom{M1,M2}(f), 
group_p: IsGroup(T;op;id;inv), 
monoid_p: IsMonoid(T;op;id), 
monot: monot(T;x,y.R[x; y];f), 
cancel: Cancel(T;S;op), 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f), 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op), 
action_p: IsAction(A;x;e;S;f), 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f), 
bilinear: BiLinear(T;pl;tm), 
inverse: Inverse(T;op;id;inv), 
comm: Comm(T;op), 
assoc: Assoc(T;op), 
ident: Ident(T;op;id), 
coprime: CoPrime(a,b), 
uconnex: uconnex(T; x,y.R[x; y]), 
connex: Connex(T;x,y.R[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
trans: Trans(T;x,y.E[x; y]), 
usym: UniformlySym(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
eqfun_p: IsEqFun(T;eq), 
inject: Inj(A;B;f), 
inv_funs: InvFuns(A;B;f;g), 
uni_sat: a = !x:T. Q[x], 
iff: P 

 Q, 
decidable: Dec(P), 
l_disjoint: l_disjoint(T;l1;l2), 
fset-closed: (s closed under fs), 
f-subset: xs 
 ys, 
fset-member: a 
 s, 
p-outcome: Outcome, 
i-closed: i-closed(I), 
i-finite: i-finite(I), 
sq_exists:
x:{A| B[x]}, 
q-rel: q-rel(r;x), 
qless: r < s, 
qle: r 
 s, 
fun-connected: y is f*(x), 
infix_ap: x f y, 
l_all: (
x
L.P[x]), 
l_exists: (
x
L. P[x]), 
prime: prime(a), 
reducible: reducible(a), 
cmp-le: cmp-le(cmp;x;y), 
l_contains: A 
 B, 
grp_lt: a < b, 
set_lt: a <p b, 
set_leq: a 
 b, 
assoced: a ~ b, 
divides: b | a, 
false: False, 
pi1: fst(t), 
rel_plus: R
, 
rel_exp: R^n, 
llex: llex(A;a,b.<[a; b])
Lemmas : 
sq_stable__equal, 
sq_stable__all, 
pi2_wf, 
sq_stable_from_decidable, 
equal-valueall-type, 
union-valueall-type, 
sq_stable__valueall-type, 
valueall-type_wf, 
member_wf, 
empty-bag_wf, 
rec-dataflow-equal, 
uall_wf, 
squash_wf, 
true_wf, 
df-program-type_wf, 
bag_wf, 
dataflow_wf, 
df-program-meaning_wf, 
dataflow-program_wf, 
df-prog-equiv_wf, 
unit_wf, 
df-program-statetype_wf
\mforall{}[A:Type].  \mforall{}[p,q:DataflowProgram(A)].
    df-program-meaning(p)  =  df-program-meaning(q) 
    supposing  (df-program-type(p)  =  df-program-type(q))
    \mwedge{}  (\mexists{}R:df-program-statetype(p)?  {}\mrightarrow{}  df-program-statetype(q)?  {}\mrightarrow{}  \mBbbP{}
            df-prog-equiv(A;p;q;s1,s2.R[s1;s2]))
Date html generated:
2011_08_16-AM-09_36_49
Last ObjectModification:
2011_06_17-PM-01_34_29
Home
Index