{ [Info:Type]. [es:EO+(Info)]. [A:Type]. [f:A  bag(Top)]. [X:EClass(A)].
  [e:E].
    f[X](e) ~ only(f X(e)) supposing e  f[X] }

{ Proof }



Definitions occuring in Statement :  es-filter-image: f[X] eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: b supposing a uall: [x:A]. B[x] top: Top apply: f a function: x:A  B[x] universe: Type sqequal: s ~ t bag-only: only(bs) bag: bag(T)
Definitions :  implies: P  Q filter: filter(P;l) bag-only: only(bs) nil: [] qabs: |r| append: as @ bs strong-subtype: strong-subtype(A;B) decide: case b of inl(x) =s[x] | inr(y) =t[y] le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) product: x:A  B[x] exists: x:A. B[x] void: Void so_lambda: x.t[x] sq_type: SQType(T) eclass-val: X(e) sqequal: s ~ t es-filter-image: f[X] in-eclass: e  X set: {x:A| B[x]}  prop: assert: b uimplies: b supposing a subtype: S  T subtype_rel: A r B atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x event_ordering: EO es-E: E lambda: x.A[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) top: Top bag: bag(T) dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t cand: A c B true: True false: False fpf: a:A fp-B[a] MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA
Lemmas :  es-filter-image-val member_wf subtype_rel_wf es-interface-top false_wf ifthenelse_wf true_wf es-is-filter-image bag_wf eclass_wf event-ordering+_wf es-E_wf es-base-E_wf subtype_rel_self event-ordering+_inc assert_wf in-eclass_wf es-filter-image_wf eclass-val_wf top_wf subtype_base_sq isect_subtype_base

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(Top)].  \mforall{}[X:EClass(A)].  \mforall{}[e:E].
    f[X](e)  \msim{}  only(f  X(e))  supposing  \muparrow{}e  \mmember{}\msubb{}  f[X]


Date html generated: 2011_08_16-PM-04_11_51
Last ObjectModification: 2011_06_20-AM-00_43_42

Home Index